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The statistical mechanics of simple glass forming systems in two dimensions is worked out. The glass
disorder is encoded via a Voronoi tesselation, and the statistical mechanics is performed directly in this
encoding. The theory provides, without free parameters, an explanation of the glass transition phenomenology,
including the identification of two different temperatures, Tg and Tc, the first associated with jamming and the
second associated with crystallization at very low temperatures.
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INTRODUCTION

The term “glass transition” refers to the enormous slow-
ing down in the dynamics of some liquids when their tem-
perature is lowered. Despite decades of research, a clear ex-
planation of this phenomenon, common to materials as
diverse as molecular glasses, metallic glasses, colloids, etc.,
is still lacking �1�. The difficulty is that the disordered mo-
lecular arrangement in a glass appears indistinguishable from
that of the corresponding liquid, without any sign of a static
correlation length that increases appreciably at the glass tran-
sition �2�. In this Rapid Communication, we offer a theory of
the glass transition in simple glass forming systems, based
on an encoding of the disorder that is able to flush out the
pertinent features of the transition. In particular, the disap-
pearance of liquidlike regions and the huge increase of a
typical scale are all understood, in agreement with numerical
simulations.

The system. We focus again on the well-studied glass
former obtained from a two-dimensional binary mixture of
disks interacting via a soft 1 /r12 repulsion with a “diameter”
ratio of 1.4 �3�. The particles have the same mass m, but half
of the particles are “large” with “diameter” �2=1.4 and half
of the particles are “small” with “diameter” �1=1. The three
pairwise additive interactions are purely repulsive:

uab = ���ab

r
�12

, a,b = 1,2, �1�

where �aa=�a and �ab= ��a+�b� /2. The cutoff radii of the
interaction are set at 4.5�ab. The units of mass, length, time,
and temperature are m, �1, �=�1

�m /�, and T=� /kB, respec-
tively, with kB being Boltzmann’s constant. We simulated
N=1024 particles in a square box �of area L2� with periodic
boundary conditions. Reference �3� found that for tempera-
ture T�0.5 the system is liquid and for lower temperatures
dynamical relaxation slows down. A precise glass transition
had not been identified in �3�.

The glass transition. To overcome the lack of signatures
of the glass transition in the particle positions on the molecu-
lar level, we encode the state of the system using the Voronoi
tesselation �5�, where a polygon associated with any particle
contains all points closest to that particle than to any other
particle. The edges of such a polygon are the perpendicular
bisectors of the vectors joining the central particle. Such an
encoding has been used extensively before �3–5�, where it

was also noted that the geometric Euler constraint implies
that average coordination number is 6 at all temperatures,
and local coordination numbers other than 6 were referred to
as “defects.” Our encoding is richer; in our work �6� it was
discovered that a significant insight to the glass transition is
gained by distinguishing between “liquidlike” defects and
“glasslike” defects. We observed �6� that only in the liquid
phase there exist small particles enclosed in heptagons �or
even octagons�, and large particles enclosed in pentagons �or
even squares� �cf. Fig. 1, right panel�. In the glass phase, we
observe only defects of the opposite type, i.e., small particles
in pentagons and large particles in heptagons, see Fig. 1.
Accordingly we proposed that the concentration of these par-
ticular defects is a good indicator of the glass transition. The
concentration c� of these liquidlike defects becomes so small
in the glass phase that we cannot distinguish it from zero �cf.
Fig. 1, lower panel�, unless the glass is put under mechanical
strain, cf. Ref. �6�. Associated with this concentration, we
can define a typical scale, �:

� � 1/�c�. �2�

In parallel with the strong decrease in c�, we observe a huge
increase in the typical scale �, in agreement with the tremen-
dous slowing down of the dynamics �7�.

In Fig. 2, right panel, we show c� as a function of the
temperature for a protocol of slow cooling. For temperatures
larger than 0.8, the concentration follows closely an expo-
nential fit,

c� = A exp − ��U/T�, A 	 0.094, �U 	 1.90. �3�

For temperatures in the range 0.3�T�0.8, we find an ex-
cellent fit to

c� = B�T − Tg�2, B 	 0.02, Tg = 0.16 ± 0.02. �4�

The quality of this fit is demonstrated in Fig. 2, left panel.
The fit �4� appears to identify a sharp glass transition Tg
=0.16±0.02; note, however, that the fit is made in the range
0.3�T�0.8 that does not include Tg. In fact, there is no
theoretical reason to expect that c� truly vanishes at Tg, but it
becomes so small that we indeed do not see a single liquid-
like defect in our finite-box simulations. Similarly, in our
finite size box we cannot distinguish between a diverging
length scale and a scale much larger than L. Within the range
0.3�T�0.8, we fit an apparently divergent length
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� 
 �T − Tg�−�, � = 1. �5�

In �6�, it was shown that the divergence of � is in one-to-one
correspondence with the divergence of the relaxation time of
the viscous fluid as T→Tg.

Statistical Mechanics. Here, we present the statistical me-
chanics of this system, rationalizing and explaining the fea-
tures of the transition presented above. The main point to
stress is that even in the glass phase, when particles are prac-
tically jammed and precluded from large excursions, the
Voronoi tesselation is still highly mobile. Minute changes in
particle positions can lead, via T1 foamlike processes �8�, to
transitions between cell types. Therefore if one can convince
oneself that the cell types, including the presence of a small
or large particle inside them, are proper “species,” one can
construct statistical mechanics right on the space of these
cells. We define the energy of each cell type as the average

�over all cells of the same type� of the potential energy �i

=��k=1
Ei �� �ik

rik
�12 where Ei is the number of edges associated

with that cell type, and rik being the distance to the particle in
the adjacent Voronoi cell. In Fig. 3, we present the values of
these energies measured as a function of the temperature,
following a protocol of slow cooling. There are ten different
cell types in this system �large particle or small particle in
squares, pentagons, hexagons, heptagons, and octagons�, but
octagons and squares are not shown since they disappear
much before the glass transition. The lesson drawn from this
graph is that the different cell types have clearly split ener-
gies throughout the interesting temperature range, and that
these energies are only weakly dependent on the tempera-
ture. Within the temperature range of interest, we can focus
on the six types of cells; denoted by �Ni�i=1

6 the number of
cells of each type, with number of edges Ei, ordering them
by the energy �i from i=1 being the highest one �large par-
ticle in a pentagon� to i=6 being the small particle in a
heptagon. Additional important properties of the cell types

FIG. 1. �Color online�. Upper panel: a Voronoi polygon con-
struction at T=3, with the seven-color code used in this paper.
Small particles in pentagons �heptagons� are light green �dark
green� and large particles in pentagons �heptagons� are violet
�pink�. Hexaons are in blue, octagons in black, and squares in yel-
low. Lower panel: a typical Voronoi construction in the glass phase
at T=0.1. Note the total disappearance of liquidlike defects.
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FIG. 2. �Color online�. Concentration of defects under slow
cooling. Upper panel: the concentration of the liquidlike defects:
large particles in pentagons �red dots� and small particles in hepta-
gons �blue dots�. Lower panel: the fit of the concentration of liquid-
like defects as a function of temperature according to Eq. �4�.
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are their areas 	i and their shapes; the first affects the en-
thalpy term and both affect the entropy when we count the
number of possible tilings of the plane. With this in mind, we
can construct the statistical mechanics of this system by con-
sidering the free energy G=U+ pV−TS. The value of U is
then simply �i=1

6 Ni�i. The pV term is simply p�i=1
6 Ni	i.

Lastly, we need to estimate the entropy term. In principle,
this should be computed from the number of possible com-
plete tilings of the area by Ni cells of each type with its given
area and shape, subject to the Euler constraint �i=1

6 NiEi
=6N. This is a formidable problem. A useful estimate can be
made by considering the area only, and filling space starting
with the largest objects, then the next largest, etc. until the
smallest is fit in. Denoting the possible number of boxes to
fit the largest cells by N1�V /	1, then the number of boxes
available for the second largest cell by N2��V−N1	1� /	2,
etc., the number of possible configurations W is

W = 
k=1
6 Nk!

Nk ! �Nk − Nk�!
. �6�

Denoting xi�Ni /Ni, we compute directly xi=ci	i /� j=i
6 cj	 j,

where ci is the number concentration of each defect. We can
now compute S=kB ln W and write G together with a
Lagrange multiplier for the Euler constraint,

G = �
i=1

6

Ni�i + p�
i=1

6

Ni	i + ��
i=1

6

NiEi

+ T�
k=1

6

Nk�xk ln xk + �1 − xk�ln�1 − xk�� . �7�

The chemical potential �i��G /�Ni is then

�i = �i + p	i + T�ln xi + �
k=1

i−1
	i

	k
ln�1 − xk�� + �Ei. �8�

We now recognize that in equilibrium there exist only two
independent values of �i, one for the small particles �S and

one for the large particles �L, and we have nine unknowns—
six values of ci, 2 values of �, and one Lagrange multiplier
�. This is precisely balanced by the six equations �8�, the
Euler constraint, and the two constraints �i=1

3 ci=�k=4
6 ck

=1/2. These equations can be solved numerically using the
precise values of 	i�T� and �i�T� as measured in the simula-
tion. The approximate calculation of the entropy, however,
does not warrant such a detailed calculation. In reality, cal-
culating the average areas of the cell types in the numerical
simulations, we discover that to an excellent approximation
these fall in two classes, smaller cells of area 	S when small
particles are in them, and larger cells of area 	L when large
particles are enclosed. These areas again are only weakly
dependent on the temperature. Then the whole system of
equations simplifies to two analytically tractable sets of
equations

�̃L = �i + T ln ci + �Ei �i = 1,2,3� ,
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FIG. 4. �Color online�. Upper panel: the concentration of the
liquidlike defect �small in heptagon� as a function of temperature,
together with the quadratic fit of the type Eq. �4�. Lower panel: the
concentrations of all the Voronoi cells as a function of T. Note the
close-to-degeneracy of pairs of cells: the upper pair is the glasslike
defects, the middle pair is the two hexagons, and the lower pair the
liquidlike defects. Observe the existence of two temperatures, inter-
preted as Tg and Tc.
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FIG. 3. �Color online�. The average energies of the Voronoi cells
as a function of the temperature as measured in the simulations.
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�̃S = �i + T ln ci + �Ei �i = 4,5,6� , �9�

together with the above mentioned three constraints. In �̃,
we have absorbed terms that added to � in this special case.

In Fig. 4 we show the solutions of these equations when
we use values of �i taken from the Fig. 3 at T=0 �9�. The
results are in excellent agreement with the simulations. The
curve associated with the temperature dependence of the
concentration of the liquidlike defects can be very well fit by
a quadratic fit like Eq. �4�, with a temperature Tg	0.07. In
fact, the solution of Eqs. �9� shows that the concentrations do
not quite vanish but become exponentially small, as stated
above and in �6�. Note that the numerical value of Tg differs
from the simulation, as is expected from a theory that does
not take careful account of the correlations between different
cells. The statistical mechanics predicts a second transition
�see left panel of Fig. 4�. There is a temperature Tc where the
concentration of hexagonal cells is predicted to be exponen-
tially small, and the system remains only with glasslike “de-
fects.” This prediction can be checked by simulations. In-
deed, we found that phases made of only pentagons with
small particles and heptagons with large particles exist and

are stable at low temperatures, see Fig. 5. Upon warming
such a phase up, at Tc, a sizable number of hexagons appears
to form the generic glassy state. Upon further warming, at
Tg, a sizable number of liquidlike defects brings the system
to a liquid state. The actual values of Tg and Tc can be un-
derstood from this model. Denoted by c�, cH, and cG the
concentrations of the liquidlike, hexagons, and glasslike de-
fects, and by ��=�1+�6	12.48 the energy associated with
the liquidlike defects, by �H=�2+�5	11.94 the energy of the
hexagons, and �G=�3+�4	11.76 the energy of the glasslike
defects. The theory predicts that ratios c� /cH and cH /cG are
of the order of exp�−���−�H� /T� and exp�−��H−�G� /T�, re-
spectively. As an estimate of Tg and Tk take these ratios to be,
say, of the order of 1% 
exp�−5� and observe that such
ratios are obtained for T=Tg	0.11 and T=Tc	0.04. It is
important to notice that �H−�G could be positive rather than
negative, and then the system would crystallize on a hexago-
nal lattice. Such a lattice can exist in this system only when
the particle’s phase separates into two pure hexagonal lat-
tices of small and large particles, respectively, with an inter-
face in between. Such a phase may be even by the ground
state, but seems to be inaccessible in dynamical experiments
starting from random organizations of small and large par-
ticles. As the energies displayed in Fig. 3 were measured
from the dynamics, our statistical mechanics does not reflect
the possibility of phase separation.

CONCLUSIONS

It is quite remarkable that one can understand the proper-
ties of a system of strongly interacting particles in an essen-
tially jammed state using the statistical mechanics of a mo-
bile set of essentially noninteracting quasiparticles. Without
any free parameter, we have offered a semiquantitative un-
derstanding of the features of the glass transition in this sys-
tem, as well as the existence of two distinct temperatures Tg
and Tc.
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FIG. 5. �Color online�. An example of a stable phase formed by
glasslike defects at very low temperatures.
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